Home
Class 12
MATHS
If x^y-y^x then show that dy/dx= [y(xlog...

If `x^y-y^x` then show that dy/dx= `[y(xlogy-y)]/[x(ylogx-x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^y=y^x ,then find (dy)/(dx)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .