Home
Class 12
MATHS
If y=f(u), u=g(x) , then dy/dx=?...

If `y=f(u)`, `u=g(x)` , then `dy/dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f[phi(psi(h(g(x))], then (dy)/(dx) is equal to

Given y=f(u) and u=g(x) Find (dy)/(dx) if y=2u^(3),u=8x-1

Given y = f(u) and u = g(x). Find (dy)/(dx) . y = sin u, u = 3x + 1

If y=(1)/(4)u^(4),u=(2)/(3)x^(3)+5 , then (dy)/(dx)=

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

If y=sqrt(u) ,u=(3-2v)v and v=x^(2) , then (dy)/(dx)=

If y=f(x) then (dy)/(dx)=f'(x), therefore,let y=f{g(x)}, then f'{g(x)} will be denoted

If y=tan[(1)/(2)cos^-1((1-u^(2))/(1+u^(2)))+(1)/(2)sin^(-1)((2u)/(1+u^(2)))]" and "x=(2u)/(1-u^(2))," then: "(dy)/(dx)=

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If x=sqrt (1+u^(2)),y =log (1+u^(2) ) ,then (dy)/(dx) =