Home
Class 12
MATHS
If y=1+x+x^2/(2!)+x^3/(3!)...+x^n/(n!) t...

If `y=1+x+x^2/(2!)+x^3/(3!)...+x^n/(n!)` then `dy/dx=`
`(a) y`
`(b) y+x^n/(n!)`
`(c) y-x^n/(n!)`
`(d) y-1-x^n/(n!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!), then (dy)/(dx) is equal to (a) y(b)y+(x^(n))/(n!)(c)y-(x^(n))/(n!) (d) y-1-(x^(n))/(n!)

If x^n+y^n=a^n , then dy/dx=

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=

If (x+y)^(m+n)=x^my^n then dy/dx= (A) x/y (B) -y/x (C) -x/y (D) y/x

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

If x^(m)y^(n)=(x+y)^(m+n), then (dy)/(dx) is (x+y)/(xy) (b) xy (c) (x)/(y) (d) (y)/(x)

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is: