Home
Class 12
MATHS
If y=1+x/(1!)+x^2/(2!)+...+x^n/(n!) then...

If `y=1+x/(1!)+x^2/(2!)+...+x^n/(n!)` then `dy/dx+x^n/(n!)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!), then (dy)/(dx) is equal to (a) y(b)y+(x^(n))/(n!)(c)y-(x^(n))/(n!) (d) y-1-(x^(n))/(n!)

if x^(m)*y^(n)=1 then (dy)/(dx)

If x^n+y^n=a^n , then dy/dx=

if y=(a^(x))/(x^(n)) then (dy)/(dx)

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n))) then (dy)/(dx) at x=0 is

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2n)) then find (dy)/(dx) at x=0

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=