Home
Class 12
MATHS
If x^2=y+z , y^2=z+x and z^2=x+y then 1/...

If `x^2=y+z` , `y^2=z+x` and `z^2=x+y` then `1/(x+1)+1/(y+1)+1/(z+1)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)=y+z,y^(2)=z+x,z^(2)=x+y, then the value of (1)/(x+1)+(1)/(y+1)+(1)/(z+1)

if x^(2) + y^(2) =z^(2) , "then" 1/(log_(z+x)y) + 1/(log_(z-x)y) = _______

If x+y+z=12 and x^(2)+y^(2)+z^(2)=96 and (1)/(x)+(1)/(y)+(1)/(z)=36 then the value x^(3)+y^(3)+z^(3) divisible by prime number is

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(x)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).