Home
Class 12
MATHS
The maximum value of f(x)=x^(2/x), (xgt0...

The maximum value of `f(x)=x^(2/x)`, `(xgt0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The local maximum value of the function f(x)=(2/x)^(x^2),xgt0 , is

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equals

Find the maximum or minimum values of the function y=x+1/x for xgt0 .

Consider the fucntion f(x)=((1)/(x))^(2x^2) , where xgt0 . At what value of x does the function attain maximum value ?

The vectors (x,x+1,x+2),(x+3,x+3,x+5) and (x+6,x+7,x+8) are coplanar for (A) all values of x (B) xlt0 (C) xgt0 (D) none of these

f(x)={{:(3-x",","when",x le0, ),( x^(2)",", "when",xgt0):} is discontinuous at x=0

If x^(2)=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@) , then the value of x(xgt0) is

Consider the following statement 1. f(x)=e^(x) , where xgt0 2. g(x)=|x-3| which of the above function is/are continuous?