Home
Class 12
MATHS
The maximum value of f(x)=-|x|+1 is...

The maximum value of `f(x)=-|x|+1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=-|x+2|+5 is:

The maximum value of f(x)=|x In x| in x in(0,1) is

Let f(x)=min{4x+1,x+2,-2x+4}. then the maximum value of f(x) is

If f(x) = Min. { x+6, |x+e+1|, e^-x}, then maximum value of f(x) is

If f(x)=Min.{x+6,|x+e+1|,e^(-x)} , then maximum value of f(x) is

If f(x)= Min. {x+6, |x+e+1|, e^-x}, then maximum value of f(x) is

If f(x) = min. {x +6, |x +e+1|, e}, then maximum value of f(x) is

If f(x) = min. {x +6, |x +e+1|, e}, then maximum value of f(x) is

If f(x)=a-(x-3)^(8//9) , then the maximum value of f(x) is

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is