Home
Class 12
MATHS
int(0)^( pi)|1-x|*dx...

`int_(0)^( pi)|1-x|*dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

int_(0)^( pi)(xdx)/(1+sin x)dx

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi)((pi-x)dx)/(1+sinx) equal to ?

If int_(0)^( pi)f(x)dx=pi+int_(pi)^(1)f(t)dx, then the value of (L) is :

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

" 2) "int_(0)^( pi)(1+cos x)^(3)dx

int_(0)^( pi/2)(x)/((1-x^(2)))dx

int_(0)^( pi/2)sqrt(1-sin x)dx

If f:R rarr R,f(x)=x+sin x, then value of int_(0)^( pi)(f^(-1)(x))dx equals