Home
Class 14
REASONING
If 6^(2)%2^(2)^^3^(2)=41 and 7^(2)%5^(2)...

If `6^(2)%2^(2)^^3^(2)=41` and `7^(2)%5^(2)^^2^(2)=28`, then `5^(2)%3^(2)^^1^(2)=?`

A

17

B

22

C

13

D

26

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(1^(2)-2^(2)+3^(2)) + (4^(2)-5^(2)+6^(2))+(7^(2)-8^(2)+9^(2))….30 terms

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

If a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is a^(*)b=a^(2)+b^(2), then the value of (4*5)*3 is (4^(2)+5^(2))+3^(2)( ii )(4+5)^(2)+3^(2)41^(2)+3^(2)( iv) (4+5+3)^(2)

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(3))+ (3^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

The value of ((6^(-1)7^(2))/(6^(2)7^(-4)))^((7)/(2))xx((6^(-2)7^(3))/(6^(3)7^(-5)))^(-(5)/(2)) is

The series 1*3^(2)+2*5^(2)+3*7^(2)+

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+...+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+...+((1001)^(2))/(2003)

Simplify ((5^(-1)*7^(2))/(5^(2)*7^(-4)))^((7)/(2))*((5^(-2)*7^(3))/(5^(3)*7^(-5)))^(-(5)/(2))

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+....+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+....+((1001)^(2))/(2003) The closest of a-b is