Home
Class 14
MATHS
If x=3-2sqrt(2) , then sqrt(x)+((1)/(sqr...

If `x=3-2sqrt(2)` , then `sqrt(x)+((1)/(sqrt(x)))` is equal to

A

0

B

1

C

2

D

`2 sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

If x=5+2sqrt(6), then (x-1)/(sqrt(x)) is equal to a.sqrt(2) b.sqrt(3)c.2sqrt(2)d.2sqrt(3)

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :