Home
Class 14
MATHS
The value of 1 19/21 -[1 10/21 + 1/2 " o...

The value of `1 19/21 -[1 10/21 + 1/2 " of " 1/3 // 7/12 -(2/7 " of " 1/5)]` is:

A

`1/5`

B

`3/5`

C

`2/5`

D

`1/10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 \frac{19}{21} - \left[ 1 \frac{10}{21} + \frac{1}{2} \text{ of } \frac{1}{3} \text{ of } \frac{7}{12} - \left( \frac{2}{7} \text{ of } \frac{1}{5} \right) \right] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Convert mixed numbers to improper fractions First, we convert the mixed numbers into improper fractions: - \( 1 \frac{19}{21} = \frac{21 \times 1 + 19}{21} = \frac{40}{21} \) - \( 1 \frac{10}{21} = \frac{21 \times 1 + 10}{21} = \frac{31}{21} \) So, the expression now looks like: \[ \frac{40}{21} - \left[ \frac{31}{21} + \frac{1}{2} \text{ of } \frac{1}{3} \text{ of } \frac{7}{12} - \left( \frac{2}{7} \text{ of } \frac{1}{5} \right) \right] \] ### Step 2: Calculate the operations inside the brackets Next, we will calculate \( \frac{1}{2} \text{ of } \frac{1}{3} \text{ of } \frac{7}{12} \): - First, calculate \( \frac{1}{3} \text{ of } \frac{7}{12} = \frac{1}{3} \times \frac{7}{12} = \frac{7}{36} \) - Now calculate \( \frac{1}{2} \text{ of } \frac{7}{36} = \frac{1}{2} \times \frac{7}{36} = \frac{7}{72} \) Next, calculate \( \frac{2}{7} \text{ of } \frac{1}{5} \): - \( \frac{2}{7} \times \frac{1}{5} = \frac{2}{35} \) ### Step 3: Substitute back into the expression Now substitute these values back into the expression: \[ \frac{40}{21} - \left[ \frac{31}{21} + \frac{7}{72} - \frac{2}{35} \right] \] ### Step 4: Combine the terms inside the brackets To combine \( \frac{31}{21} + \frac{7}{72} - \frac{2}{35} \), we need a common denominator. The least common multiple of \( 21, 72, \) and \( 35 \) is \( 1260 \). Convert each fraction: - \( \frac{31}{21} = \frac{31 \times 60}{1260} = \frac{1860}{1260} \) - \( \frac{7}{72} = \frac{7 \times 17.5}{1260} = \frac{122.5}{1260} \) - \( \frac{2}{35} = \frac{2 \times 36}{1260} = \frac{72}{1260} \) Now combine: \[ \frac{1860 + 122.5 - 72}{1260} = \frac{1860 + 122.5 - 72}{1260} = \frac{1910.5}{1260} \] ### Step 5: Substitute back into the main expression Now substitute this back into the main expression: \[ \frac{40}{21} - \frac{1910.5}{1260} \] Convert \( \frac{40}{21} \) to have a denominator of \( 1260 \): \[ \frac{40 \times 60}{1260} = \frac{2400}{1260} \] ### Step 6: Perform the final subtraction Now perform the subtraction: \[ \frac{2400}{1260} - \frac{1910.5}{1260} = \frac{2400 - 1910.5}{1260} = \frac{489.5}{1260} \] ### Step 7: Simplify the fraction To simplify \( \frac{489.5}{1260} \): - Convert \( 489.5 \) to a fraction: \( \frac{979}{2} \) - So, \( \frac{979}{2 \times 1260} = \frac{979}{2520} \) ### Final Result The final value of the expression is: \[ \frac{1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (3 1/4-4/5" of "5/6)/(4 1/3div1/5-(3/10+21 1/5))-(2 1/3" of "1 1/2) is

The value of (5 div 2 of 1/2)div (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21 is: (5 div 2 of 1/2)div (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21 का मान ज्ञात करे।

The value of (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21-(5 div 2 of 1/2) is: (5 1/4 div 3/7 of 1/2)div (5 1/9-7 7/8 div 9 9/20)xx11/21-(5 div 2 of 1/2) का मान ज्ञात करे।

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

Find the sum of 1+3 + 5 +7 + … 21

If 1 # 3 # 7 = 21 and 12 # 1 # 3 = 36, then 14 # 2 # 0 = ?

What is the value of [(1.7)^(3) - (1. 2)^(3)]//[(1 . 7)^(2) + (1. 7 xx 1. 2) + (1.2)^(2)] ?

What is the value of [(1.7)^(3) - (1. 2)^(3)]//[(1 . 7)^(2) + (1. 7 xx 1. 2) + (1.2)^(2)] ?

The value of (5^((1)/(4))-: (3)/(7)"of"(1)/(2)) -: (5(1)/(9)-7(7)/(8)-: 9 (9)/(20)) xx(11)/(21)+ (2-: 2 "of" (1)/(2)) is :

25. The value of (21_C_1- 10_C_1) +(21_C_2- 10_C_2)+ (21_C_3- 10_C_3) +...............+(21_C_10- 10_C_10)