Home
Class 14
MATHS
The value of ( (1)/(6) + [ 4 (3)/(4) -(...

The value of `( (1)/(6) + [ 4 (3)/(4) -(3 (1)/(6) - 2 (1)/(3) ) ] )/( ( (1)/(5)" of "(1)/(5) div (1)/(5) ) div ( (1)/(5) div (1)/(5) xx (1)/(5) ) )` lies between:

A

`4.2 and 4.3`

B

`4.0 and 4.1`

C

`4.3 and 4.4`

D

`4.6 and 4.8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, let's break it down systematically. ### Step 1: Simplify the Numerator The numerator is given as: \[ \frac{1}{6} + \left[ 4 \frac{3}{4} - \left( 3 \frac{1}{6} - 2 \frac{1}{3} \right) \right] \] First, convert the mixed fractions to improper fractions: - \(4 \frac{3}{4} = \frac{16 + 3}{4} = \frac{19}{4}\) - \(3 \frac{1}{6} = \frac{18 + 1}{6} = \frac{19}{6}\) - \(2 \frac{1}{3} = \frac{6 + 1}{3} = \frac{7}{3}\) Now substitute these values back into the expression: \[ \frac{1}{6} + \left[ \frac{19}{4} - \left( \frac{19}{6} - \frac{7}{3} \right) \right] \] ### Step 2: Simplify the Inner Bracket Now, simplify the inner bracket: \[ \frac{19}{6} - \frac{7}{3} \] To subtract these fractions, find a common denominator (which is 6): \[ \frac{19}{6} - \frac{14}{6} = \frac{5}{6} \] Now substitute this back into the expression: \[ \frac{1}{6} + \left[ \frac{19}{4} - \frac{5}{6} \right] \] ### Step 3: Simplify the Remaining Bracket Now simplify: \[ \frac{19}{4} - \frac{5}{6} \] Again, find a common denominator (which is 12): \[ \frac{19 \times 3}{12} - \frac{5 \times 2}{12} = \frac{57}{12} - \frac{10}{12} = \frac{47}{12} \] Now substitute this back into the expression: \[ \frac{1}{6} + \frac{47}{12} \] ### Step 4: Add the Two Fractions To add these fractions, find a common denominator (which is 12): \[ \frac{1 \times 2}{12} + \frac{47}{12} = \frac{2}{12} + \frac{47}{12} = \frac{49}{12} \] ### Step 5: Simplify the Denominator Now, simplify the denominator: \[ \left( \frac{1}{5} \text{ of } \frac{1}{5} \div \frac{1}{5} \right) \div \left( \frac{1}{5} \div \frac{1}{5} \times \frac{1}{5} \right) \] First, simplify the left part: \[ \frac{1}{5} \text{ of } \frac{1}{5} = \frac{1}{5} \times \frac{1}{5} = \frac{1}{25} \] Then divide by \(\frac{1}{5}\): \[ \frac{1}{25} \div \frac{1}{5} = \frac{1}{25} \times 5 = \frac{5}{25} = \frac{1}{5} \] Now simplify the right part: \[ \frac{1}{5} \div \frac{1}{5} = 1 \quad \text{and} \quad 1 \times \frac{1}{5} = \frac{1}{5} \] Now substitute back into the denominator: \[ \frac{1}{5} \div \frac{1}{5} = 1 \] ### Step 6: Final Calculation Now we have: \[ \frac{\frac{49}{12}}{1} = \frac{49}{12} \] ### Step 7: Approximate the Value To find the approximate value: \[ \frac{49}{12} \approx 4.0833 \] ### Conclusion The value of the expression lies between 4 and 5.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1/3 + [4 (3)/(4) - (3 (1)/(6)-2 (1)/(3))])/((1/5 of 1/5 div 1/5) div (1/5 div 1/5 xx 1/5)) lies between:

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

1/3+[4 3/4-(3 1/6-2 1/3)] The value of (1/5" of "5div 1/5)div(1/5 div 1/5 xx 1/5) lies between :

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

The value of (1)/(3) div (5)/(6) xx (-5)/(3) is equal to :

5(5)/(6) + [2(2)/(3) - [3(3)/(4) (3(4)/(5) div 9(1)/(2))]]

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is