Home
Class 14
MATHS
Simplify the following expression. 4-3...

Simplify the following expression.
`4-3 "of" (1(1)/2+1/3div1/2"of"4-1/4)`

A

`-8`

B

`17/12`

C

`-1/4`

D

`-(19)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 4 - 3 \text{ of } \left( 1 \frac{1}{2} + \frac{1}{3} \div \frac{1}{2} \text{ of } 4 - \frac{1}{4} \right) \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Convert Mixed Numbers and Fractions**: - Convert \( 1 \frac{1}{2} \) to an improper fraction: \[ 1 \frac{1}{2} = \frac{3}{2} \] - The expression now looks like: \[ 4 - 3 \text{ of } \left( \frac{3}{2} + \frac{1}{3} \div \frac{1}{2} \text{ of } 4 - \frac{1}{4} \right) \] 2. **Calculate \( \frac{1}{3} \div \frac{1}{2} \text{ of } 4 \)**: - First, calculate \( \frac{1}{2} \text{ of } 4 \): \[ \frac{1}{2} \text{ of } 4 = \frac{1}{2} \times 4 = 2 \] - Now, perform the division: \[ \frac{1}{3} \div 2 = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} \] 3. **Substitute Back into the Expression**: - Now substitute \( \frac{1}{6} \) back into the expression: \[ 4 - 3 \text{ of } \left( \frac{3}{2} + \frac{1}{6} - \frac{1}{4} \right) \] 4. **Combine the Fractions Inside the Bracket**: - To combine \( \frac{3}{2} + \frac{1}{6} - \frac{1}{4} \), find a common denominator. The least common multiple of 2, 6, and 4 is 12. - Convert each fraction: \[ \frac{3}{2} = \frac{18}{12}, \quad \frac{1}{6} = \frac{2}{12}, \quad \frac{1}{4} = \frac{3}{12} \] - Now combine: \[ \frac{18}{12} + \frac{2}{12} - \frac{3}{12} = \frac{18 + 2 - 3}{12} = \frac{17}{12} \] 5. **Substitute Back Again**: - Substitute \( \frac{17}{12} \) back into the expression: \[ 4 - 3 \text{ of } \frac{17}{12} \] 6. **Calculate \( 3 \text{ of } \frac{17}{12} \)**: - Calculate \( 3 \text{ of } \frac{17}{12} \): \[ 3 \text{ of } \frac{17}{12} = 3 \times \frac{17}{12} = \frac{51}{12} \] 7. **Final Calculation**: - Now, substitute this back into the expression: \[ 4 - \frac{51}{12} \] - Convert 4 to a fraction with a denominator of 12: \[ 4 = \frac{48}{12} \] - Now perform the subtraction: \[ \frac{48}{12} - \frac{51}{12} = \frac{48 - 51}{12} = \frac{-3}{12} = -\frac{1}{4} \] ### Final Answer: The simplified expression is: \[ -\frac{1}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following expressions : 5 1/3 div 4/15

Simplify the following expressions : 5 2/3 div 4/17

Simplify the following expressions : 36 div 4 " of " 1/2 + 3/4 xx 3/2 .

Simplify the following expressions: 2 - 1/(3+1/(4-1/(5+1/(6-1/(7)))))

Simplify the following expression : (2/3 xx 1/6) +(2/3 xx 7/2) -((13)/4 xx 4/3)=?

Solve the following expressions : 3+2-1xx4div2

Simplify the following :- (1/3 xx 4/5)+1/2

Simplify the following: 4 4/5 div [2 1/5-1/2 {1 1/4-(1/4-1/5)}] निम्नलिखित को सरल कीजिए:- 4 4/5 div [2 1/5-1/2 {1 1/4-(1/4-1/5)}]

Simplify each of the following : [{((-1)/5)^(-2)}^2]^(-1)\ (ii) {(1/3)^(-2)-\ (1/2)^(-3)}-:(1/4)^(-2)