Home
Class 14
MATHS
The value of (4)/(5) xx 1(1)/(9) div(8)/...

The value of `(4)/(5) xx 1(1)/(9) div(8)/(15) + (5(1)/(4) div (3)/(7) "of" (1)/(4) xx (2)/(7)) div 5(3)/(5) - (1)/(4) div (3)/(2)` is :

A

4

B

`(1)/(2)`

C

`(3)/(5)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{4}{5} \times 1\frac{1}{9} \div \frac{8}{15} + \left(\frac{5\frac{1}{4}}{\frac{3}{7}} \text{ of } \left(\frac{1}{4} \times \frac{2}{7}\right)\right) \div 5\frac{3}{5} - \frac{1}{4} \div \frac{3}{2}\), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert all mixed numbers to improper fractions: - \(1\frac{1}{9} = \frac{10}{9}\) - \(5\frac{1}{4} = \frac{21}{4}\) - \(5\frac{3}{5} = \frac{28}{5}\) So, the expression becomes: \[ \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \left(\frac{21}{4} \div \frac{3}{7} \text{ of } \left(\frac{1}{4} \times \frac{2}{7}\right)\right) \div \frac{28}{5} - \frac{1}{4} \div \frac{3}{2} \] ### Step 2: Solve the "of" Operation Next, we solve the "of" operation: \[ \frac{1}{4} \times \frac{2}{7} = \frac{2}{28} = \frac{1}{14} \] Now, substitute this back into the expression: \[ \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \left(\frac{21}{4} \div \frac{3}{7} \times \frac{1}{14}\right) \div \frac{28}{5} - \frac{1}{4} \div \frac{3}{2} \] ### Step 3: Solve the Division Operations Now, we will solve the division operations: 1. \(\frac{21}{4} \div \frac{3}{7} = \frac{21}{4} \times \frac{7}{3} = \frac{147}{12} = \frac{49}{4}\) 2. Now, substitute this back into the expression: \[ \frac{4}{5} \times \frac{10}{9} \div \frac{8}{15} + \left(\frac{49}{4} \times \frac{1}{14}\right) \div \frac{28}{5} - \frac{1}{4} \div \frac{3}{2} \] ### Step 4: Calculate Each Part 1. Calculate \(\frac{4}{5} \times \frac{10}{9} \div \frac{8}{15}\): - First, \(\frac{4}{5} \times \frac{10}{9} = \frac{40}{45} = \frac{8}{9}\) - Then, \(\frac{8}{9} \div \frac{8}{15} = \frac{8}{9} \times \frac{15}{8} = \frac{15}{9} = \frac{5}{3}\) 2. Calculate \(\frac{49}{4} \times \frac{1}{14} = \frac{49}{56} = \frac{7}{8}\) - Now, \(\frac{7}{8} \div \frac{28}{5} = \frac{7}{8} \times \frac{5}{28} = \frac{35}{224} = \frac{5}{32}\) 3. Calculate \(\frac{1}{4} \div \frac{3}{2} = \frac{1}{4} \times \frac{2}{3} = \frac{2}{12} = \frac{1}{6}\) ### Step 5: Combine All Parts Now, we combine all parts: \[ \frac{5}{3} + \frac{5}{32} - \frac{1}{6} \] ### Step 6: Find a Common Denominator The common denominator for \(3\), \(32\), and \(6\) is \(96\): - Convert \(\frac{5}{3} = \frac{160}{96}\) - Convert \(\frac{5}{32} = \frac{15}{96}\) - Convert \(\frac{1}{6} = \frac{16}{96}\) ### Step 7: Combine the Fractions Now, combine: \[ \frac{160}{96} + \frac{15}{96} - \frac{16}{96} = \frac{159}{96} \] ### Step 8: Simplify the Result The simplified result is: \[ \frac{159}{96} \approx 1.65625 \] ### Final Answer The final answer is approximately \(1.66\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) is (a) 2(1)/(4) (b) 2(1)/(3) (c) 3(1)/(4) (d) 4(1)/(2)

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of (2)/(3)div(3)/(1)" of "(4)/(9)-(4)/(5)xx1 (1)/(9)div(8)/(15)+(3)/(4)div(1)/(2) is :

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)