Home
Class 12
MATHS
In any triangle ABC, prove that a ^ 2 ...

In any triangle ABC, prove that `a ^ 2 (cos ^ 2 B−cos ^ 2 C)+b ^ 2 (cos ^ 2 C−cos ^ 2 A)+c ^ 2 (cos ^2 A−cos ^ 2 B)`=0.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

In any Delta A B C , prove that: a(b\ cos C-c cosB)=b^2-c^2

For any triangle ABC, prove that a(cosC-cos B)\ =\ 2\ (b - c)\ cos^2(A/2)

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

For any triangle ABC, prove that (a+b)/c=(cos((A-B)/2))/(sinC/2)

For any triangle ABC, prove that (a+b)/c=(cos((A-B)/2))/(sinC/2)

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

In any triangle A B C , prove that following: \ (cos^2B-cos^2C)/(b+c)+(cos^2C-cos^2A)/(c+a)+(cos^2A-cos^2B)/(a+b)=0