Home
Class 12
MATHS
In triangle ABC, (b+c) cos A+(c+a)cos B+...

`In triangle ABC, (b+c) cos A+(c+a)cos B+(a+b)cos C =a+b+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos A+cos B+cos C=

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In any A B C , prove that: (b+c)cos A+(c+a)cos B+(a+b)cos C=a+b+c

In a triangle ABC, sin A- cos B = Cos C , then angle B is