Home
Class 12
MATHS
int(0)^(1)x(1-x)^(n)dx...

`int_(0)^(1)x(1-x)^(n)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (^nC_(0))/(n)+(^nC_(1))/(n+1)+(^nC_(2))/(n+2)+....+(n)/(2n) is equal to a.int_(0)^(1)x^(n-1)(1-x)^(n)dxbint_(1)^(2)x^(n)(x-1)^(n-1)dxc*int_(1)^(2)x^(n-1)(1+x)^(n)dx d.int_(0)^(1)(1-x)^(n-1)dx

The value of int_(0)^(1)x(1-x)^(n)backslash dx

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

int_(0)^(1)(1-x^(3))^(n)dx=

int_(0)^(a) x (1-x)^(5)dx=........

int_(0)^(1) x dx

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

int_(0)^(1)(x)/(x+1)dx=