Home
Class 10
MATHS
If 3^( x + 1 ) = 9^( 3 ) , then x is eq...

If `3^( x + 1 ) = 9^( 3 )` , then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If | [ 3 , x ], [ x , 1 ] | = | [ 3 , 2 ] , [ 4 , 1 ] | , then x is equal to :

If 3^(x)-3^(x-1)=18 , then x^(x) is equal to

If (x - 1/x) = 5 , then x^3 - 1/(x^3) equals :

If x-1/x=7 , then x^3-1/x^3 is equal to :

If p( x ) = x + 3 , then p( x ) + p (-x ) is equal to ( a ) 3 ( b ) 6 ( c ) 9

If f(x)=sqrt(x^(2)+6x+9), then f'(x) is equal to 1 for x<-3( b) -1 for x<-3(c)1 for all x in R(d) none of these

If sum of the first 21 terms of series log _((1)/( 9 ^(2))) x + log _((1)/(9 ^(3))) x + log _((1)/( 9 ^(4))) x + ..., where x gt 0 is 504, then x is equal to :