Home
Class 10
MATHS
Prove that ((-(2)/(sqrt(3)))^(2))/(((-2)...

Prove that `((-(2)/(sqrt(3)))^(2))/(((-2)/(sqrt(3)))^(2)-2)+(((-2)/(sqrt(3)))^(2))/(((-2)/(sqrt(3)))^(2)-1)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt(3)+3sqrt(2))/(3sqrt(2)-2sqrt(3))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

((2+sqrt(3))/2)/(1+(sqrt(3)+1)/2) + ((2-sqrt(3))/2)/(1-((sqrt(3)-1)/2))

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

(22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)(2)(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

(276-sqrt(6(3)/(4)))^(2)+(2(sqrt(2)+sqrt(6)))/(3sqrt(2+sqrt(3)))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

((2+sqrt(3))/(sqrt(2)+sqrt(2+sqrt(3)))+(2-sqrt(3))/(sqrt(2)+sqrt(2-sqrt(3))))^(2)=

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=