Home
Class 10
MATHS
Simplify 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(...

Simplify `1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt2 +1)/(sqrt3)

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

1/(1+ sqrt2 + sqrt3)

Simplify (1)/(sqrt(7)+sqrt(3)-sqrt(2))

The value of the expression sqrt ((1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+.........99 terms is equal to

1/(1-sqrt2-sqrt3)=

Simplify (1/2+1/sqrt2-sqrt3)/(sqrt3-1/sqrt2-1/sqrt3)

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

5.Simplify: (1/sqrt 2)/((2/sqrt3)+2)