Home
Class 10
MATHS
sin A*sin(B-C)+sin B sin(C-A)+sin C*sin(...

`sin A*sin(B-C)+sin B sin(C-A)+sin C*sin(A-B)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

In a DeltaABC , prove that : sin3A sin(B-C)+sin3B sin(C-A) + sin3C sin (A-B)=0 .

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

19. Prove that sin(A +B) sin(A-B)+sin(B+C)sin(B-C) + sin(C+A) sin(C-A)=0

In a DeltaA B C ,\ prove that , sin^3Acos(B-C)+sin^3B cos(C-A)+sin^3\ C cos(A-B) = 3\ sin A\ sin B \ sin C

In any triangle A B C , prove that following: \ a(sin B-sin C)+b( sin C- sin A)+c(sin A-sin B)=0

Prove that: ("sin"(A-B))/(sin A sin B)+("sin"(B-C))/(sin B sin C)+("sin"(C-A))/(sin C sin A)=0

If a/(sinA)=K , then the area of "Triangle ABC" in terms of K and sines of the angles is (K^2)/4sin A sin B sin C (b) (K^2)/2sin A sin B sin C 2K^2sin A sin B "sin"(A+B) (d) none

Prove that: sin(B-C)cos(A-D) + sin(C-A) cos (B-D) + sin(A-B) cos(C-D) = 0

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In any triangle A B C , prove that following: \ \ asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+c sin(C/2)sin((A-B)/2)=0.