Home
Class 12
MATHS
int(0)^(a)e^(x+1)dx=...

`int_(0)^(a)e^(x+1)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x)dx=

Integrate by using the substitution suggested in bracket. int_(0)^(1)e^(x)dx

int_(0)^(1) x e^(x) dx=1

underset is If int_(0)^(oo)e^(-ax)dx=(1)/(a), then int_(0)^(oo)(x^(n))e^(-ax)dx

int_(0)^(1)x^2e^(2x)dx

int_(0)^(1)(e^(x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Consider the intergral A=int_(0)^(1)(e^(x)-1)/(x)dx and B=int_(0)^(1)(x)/(e^(2)-1)dx . Then, which of the following is incorrect?

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=