Home
Class 11
MATHS
Find the value of: i^2+(-i)^4-i^6...

Find the value of: `i^2+(-i)^4-i^6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1+i^2+i^4+i^6++i^(2n)

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of : (i) 2^6 (ii) 9^3 (iii) 11^2 (iv) 5^4

Find the value of (i) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574)) (i) -1 (ii) (1+i)^6+(1-i)^6

Find the value of i^(12)+i^(13)+i^(14)+i^(15)

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Find the value of (1+ i)^(6) + (1-i)^(6)

Find the value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1 (1+i)^6+(1-i)^6

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot