Home
Class 12
MATHS
asin(B-C)+bsin(C-A)+csin(A-B)=0...

`asin(B-C)+bsin(C-A)+csin(A-B)`=0

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

If any triangle ABC, find the value of asin(B-C)+b sin(C-A)+c sin(A-B)dot

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)

If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)

In any triangle A B C , prove that following: \ \ asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+c sin(C/2)sin((A-B)/2)=0.

If any triangle A B C , that: (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

In triangle A B C ,a , b , c are the lengths of its sides and A , B ,C are the angles of triangle A B Cdot The correct relation is given by (a) (b-c)sin((B-C)/2)=acosA/2 (b) (b-c)cos(A/2)=asin((B-C)/2) (c) (b+c)sin((B+C)/2)=acosA/2 (d) (b-c)cos(A/2)=2asin(B+C)/2

In triangleABC , the expression (b^(2)-c^(2))/(asin(B-C)) + (c^(2)-a^2)/(bsin(C-A)) +(a^(2)-b^(2))/(csin(A-B)) is equal to

In DeltaABC , prove that: asinA-bsinB=csin(A-B