Home
Class 12
MATHS
Prove : lim(x rarr0)(e^(x)-1)/(x)=1...

Prove : `lim_(x rarr0)(e^(x)-1)/(x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(x)-1)/(x)

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Prove that lim_(x rarr0)(e^(7x)-1)/(x)=7

lim_(x rarr0)(a^(x)-1)/(sin x)=

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)

lim_(x rarr0)(cos x-1)/(x)