Home
Class 12
MATHS
(d)/(dx)[log(x^a.b^x)]= a) a/x+logb ...

`(d)/(dx)[log(x^a.b^x)]=`
a) `a/x+logb`
b) `a/x+b/x`
c) `x/a+b/x`
d) `1/(x^a.b^x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)(e^((1)/(2)log(1+tan^(2)x))) is equal to

(a) Find d/dx (log sqrt (x^2+a^2))=?

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b) 1 (c) (x^2+1)/(x^2-4) (d) e^x(x^2-1)/(x^2-4)

If (log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1] , then x= 4 (b) 3 (c) 2 (d) 1

If (log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1] , then x= 4 (b) 3 (c) 2 (d) 1

If (log)_3x=aa n d(log)_7x=b , then which of the following is equal to (log)_(21)x ? a. a b b. (a b)/(a^(-1)+b^(-1)) c. 1/(a+b) d. 1/(a^(-1)+b^(-1)

Find: d/dx of ( Log tan x)

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to (a) 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8