Home
Class 11
MATHS
frac{1}{4!}+frac{1}{5!}=frac{x}{6!}find ...

`frac{1}{4!}+frac{1}{5!}=frac{x}{6!}`find the value of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

3frac{1}{13}+1frac{4}{13}+2frac{3}{13}

frac{1}{sqrt7-4} frac{1}{sqrt11-7}

If f(x)=x^3-frac{1}{x^(3)} find the value of f(x)+f(frac{1}{x})

Prove that Cos frac{pi}{5} + Cos frac{2pi}{5} + Cos frac{6pi}{5} + Cos frac{7pi}{5} = 0

frac{dP}{dx} = frac{d}{dx} (x^3) (frac{7-2x}{3})^(4)

solve the equations: frac{2}{sqrt x} + frac{3}{sqrt y} =2 and frac{4}{sqrt x} - frac{9}{sqrt y} =-1

dy/dx = frac{2x+y}{x}

If int frac{xdx}{x^2-4x+8}=K log (x^2-4x+8)+tan^(-1)(frac{x-2}{2})+C , then the value of K is:

x frac{dy}{dx} = y - xcos^2 frac{y}{x}

cos frac{3pi}{4}-iota sin frac{3pi}{4}