Home
Class 14
MATHS
The value of 3/7+1/14xx2frac(4)(5)-(1/4 ...

The value of `3/7+1/14xx2frac(4)(5)-(1/4 div 2/7 of 2frac(1)(3))xx(5frac(1)(5)div 3frac(1)(2)xx5/13)`

A

`22/35`

B

`3/14`

C

`14/21`

D

`29/70`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{3}{7} + \frac{1}{14} \times 2\frac{4}{5} - \left( \frac{1}{4} \div \frac{2}{7} \text{ of } 2\frac{1}{3} \right) \times \left( 5\frac{1}{5} \div 3\frac{1}{2} \times \frac{5}{13} \right) \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-step Solution 1. **Convert Mixed Numbers to Improper Fractions**: - \( 2\frac{4}{5} = \frac{2 \times 5 + 4}{5} = \frac{14}{5} \) - \( 2\frac{1}{3} = \frac{2 \times 3 + 1}{3} = \frac{7}{3} \) - \( 5\frac{1}{5} = \frac{5 \times 5 + 1}{5} = \frac{26}{5} \) - \( 3\frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{7}{2} \) The expression now looks like: \[ \frac{3}{7} + \frac{1}{14} \times \frac{14}{5} - \left( \frac{1}{4} \div \frac{2}{7} \text{ of } \frac{7}{3} \right) \times \left( \frac{26}{5} \div \frac{7}{2} \times \frac{5}{13} \right) \] 2. **Calculate the Multiplication**: - \( \frac{1}{14} \times \frac{14}{5} = \frac{1}{5} \) The expression now looks like: \[ \frac{3}{7} + \frac{1}{5} - \left( \frac{1}{4} \div \frac{2}{7} \text{ of } \frac{7}{3} \right) \times \left( \frac{26}{5} \div \frac{7}{2} \times \frac{5}{13} \right) \] 3. **Calculate the Division and 'of'**: - \( \frac{1}{4} \div \frac{2}{7} = \frac{1}{4} \times \frac{7}{2} = \frac{7}{8} \) - \( \frac{7}{8} \text{ of } \frac{7}{3} = \frac{7}{8} \times \frac{7}{3} = \frac{49}{24} \) The expression now looks like: \[ \frac{3}{7} + \frac{1}{5} - \frac{49}{24} \times \left( \frac{26}{5} \div \frac{7}{2} \times \frac{5}{13} \right) \] 4. **Calculate the Second Part**: - \( \frac{26}{5} \div \frac{7}{2} = \frac{26}{5} \times \frac{2}{7} = \frac{52}{35} \) - \( \frac{52}{35} \times \frac{5}{13} = \frac{52 \times 5}{35 \times 13} = \frac{260}{455} = \frac{52}{91} \) The expression now looks like: \[ \frac{3}{7} + \frac{1}{5} - \frac{49}{24} \times \frac{52}{91} \] 5. **Calculate the Multiplication**: - \( \frac{49}{24} \times \frac{52}{91} = \frac{2548}{2184} = \frac{1274}{1092} \) The expression now looks like: \[ \frac{3}{7} + \frac{1}{5} - \frac{1274}{1092} \] 6. **Combine the Fractions**: - Find a common denominator (LCM of 7, 5, and 1092): - The LCM is 1092. - Convert each fraction: - \( \frac{3}{7} = \frac{3 \times 156}{1092} = \frac{468}{1092} \) - \( \frac{1}{5} = \frac{1 \times 218.4}{1092} = \frac{218.4}{1092} \) Combine them: \[ \frac{468 + 218.4 - 1274}{1092} \] 7. **Final Calculation**: - Calculate the numerator: \[ 468 + 218.4 - 1274 = -587.6 \] Thus, the final answer is: \[ \frac{-587.6}{1092} \] ### Final Answer The simplified value of the expression is \( \frac{29}{70} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

HCF of frac(2)(3) , frac(4)(5) and frac(6)(7) is

14 frac(3)(4)-12 frac(1)(6) xx 3frac(1)(8)+6frac(3)(12)- 3 frac(1)(2)=

Find the value of 3 frac(1)(4) div 5frac(1)(2)(1-frac(1)(4))

The value of frac(2frac(1)(3) xx 4frac(1)(4) -4frac(1)(6) + 6 frac(1)(4)) (3frac(1)(3) + 4frac(1)(4) xx 5frac(2)(3)) is (A) 21frac(1)(160) (B) 2frac(13)(160 (C ) 2frac(21)(160) (D) frac(7)(1000)

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

Find the value of (1 + frac(1)(3))(1 + frac(1)(4))(1 + frac(1)(5))...(1 + frac(1)(n))

Find the sum of 1frac(3)(5) + 1frac(8)(9) + 2frac(4)(5)

(frac(-2)(5))^(7) div (frac(-2)(5))^(5)= ?

Simplify [ 2frac(1)(3) - 1 frac(1)(2)] 0f frac(3)(5) + 1 frac(2)(5) + 2 frac(1)(3)