Home
Class 14
MATHS
The value of (16 ""(2)/(3) div 10 ) -...

The value of ` (16 ""(2)/(3) div 10 ) - [ (8/3 xx 5/4 ) " of " 2/5 +(16)/(3 ) xx (11)/(8) - (1/4 div (1)/(28))]` is-

A

1

B

5

C

0

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (16 \times \frac{2}{3} \div 10) - \left[ \left(\frac{8}{3} \times \frac{5}{4}\right) \text{ of } \frac{2}{5} + \left(\frac{16}{3} \times \frac{11}{8}\right) - \left(\frac{1}{4} \div \frac{1}{28}\right) \right] \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Calculate \( 16 \times \frac{2}{3} \div 10 \)**: - First, calculate \( 16 \times \frac{2}{3} \): \[ 16 \times \frac{2}{3} = \frac{32}{3} \] - Now divide by 10: \[ \frac{32}{3} \div 10 = \frac{32}{3} \times \frac{1}{10} = \frac{32}{30} = \frac{16}{15} \] 2. **Calculate the expression inside the brackets**: - **Calculate \( \frac{8}{3} \times \frac{5}{4} \)**: \[ \frac{8}{3} \times \frac{5}{4} = \frac{40}{12} = \frac{10}{3} \] - **Calculate \( \frac{10}{3} \text{ of } \frac{2}{5} \)**: \[ \frac{10}{3} \times \frac{2}{5} = \frac{20}{15} = \frac{4}{3} \] - **Calculate \( \frac{16}{3} \times \frac{11}{8} \)**: \[ \frac{16}{3} \times \frac{11}{8} = \frac{176}{24} = \frac{22}{3} \] - **Calculate \( \frac{1}{4} \div \frac{1}{28} \)**: \[ \frac{1}{4} \div \frac{1}{28} = \frac{1}{4} \times 28 = 7 \] 3. **Combine the results inside the brackets**: - Now substitute back into the brackets: \[ \frac{4}{3} + \frac{22}{3} - 7 \] - Convert \( 7 \) to a fraction with a denominator of 3: \[ 7 = \frac{21}{3} \] - Combine: \[ \frac{4}{3} + \frac{22}{3} - \frac{21}{3} = \frac{4 + 22 - 21}{3} = \frac{5}{3} \] 4. **Final calculation**: - Now substitute back into the original expression: \[ \frac{16}{15} - \frac{5}{3} \] - Convert \( \frac{5}{3} \) to a fraction with a denominator of 15: \[ \frac{5}{3} = \frac{25}{15} \] - Now perform the subtraction: \[ \frac{16}{15} - \frac{25}{15} = \frac{16 - 25}{15} = \frac{-9}{15} = -\frac{3}{5} \] ### Final Answer: The value of the expression is \( -\frac{3}{5} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(4)/(5) xx 2(3)/(4) div (5)/(8)=?

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

What is the value of ((3)/(4) div (9)/(32) +(4)/(3) xx (2)/(3) " of "(27)/(16))/((1)/(2) xx ((8)/(2) -2) div (4)/(9) +((1)/(3)+(1)/(6))) ? (a) (10)/(3) (b) (13)/(2) (c) (25)/(2) (d) (31)/(2)

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

4(1)/(2)xx4(1)/(3)-8(1)/(3)div5(2)/(3)=?

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)