Home
Class 14
MATHS
What is the average of the sixty terms g...

What is the average of the sixty terms given below?
`cos^(2)x, cos^(2)2x, cos^(2)3x, …….. , cos^(2) 30 x, sin^(2)x, sin^(2) 2x, sin^(2) 3x, ………, sin^(2) 30x`

A

`cos^(2)x`

B

`0.5`

C

`1`

D

`cos^(2)x sin^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average of the given 60 terms, we will follow these steps: 1. **Identify the Terms**: The terms are \( \cos^2 x, \cos^2 2x, \cos^2 3x, \ldots, \cos^2 30x \) and \( \sin^2 x, \sin^2 2x, \sin^2 3x, \ldots, \sin^2 30x \). 2. **Count the Number of Terms**: There are 30 terms of \( \cos^2 \) and 30 terms of \( \sin^2 \), making a total of 60 terms. 3. **Calculate the Sum of the Terms**: We can group the terms as follows: \[ \text{Sum} = (\cos^2 x + \sin^2 x) + (\cos^2 2x + \sin^2 2x) + \ldots + (\cos^2 30x + \sin^2 30x) \] 4. **Use the Pythagorean Identity**: We know that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Therefore, each pair \( (\cos^2 kx + \sin^2 kx) \) for \( k = 1, 2, \ldots, 30 \) equals 1. 5. **Calculate the Total Sum**: Since there are 30 pairs: \[ \text{Sum} = 1 + 1 + 1 + \ldots + 1 \quad (\text{30 times}) = 30 \] 6. **Calculate the Average**: The average is given by the formula: \[ \text{Average} = \frac{\text{Sum of all terms}}{\text{Number of terms}} = \frac{30}{60} = \frac{1}{2} = 0.5 \] Thus, the average of the 60 terms is \( 0.5 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx