Home
Class 14
MATHS
Simplify (10^(2) " of " ((1)/(5))^(3) di...

Simplify `(10^(2) " of " ((1)/(5))^(3) div (1)/(4) xx 4 - (2)/(5) " of " 15)/((4)/(5)(5 div 5 " of " 12 + (1)/(6)))`

A

`-(65)/(73)`

B

34

C

`-(147)/(73)`

D

`-(78)/(73)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{10^2 \text{ of } \left(\frac{1}{5}\right)^3 \div \frac{1}{4} \times 4 - \frac{2}{5} \text{ of } 15}{\left(\frac{4}{5}\right) \left(5 \div 5 \text{ of } 12 + \frac{1}{6}\right)} \] we will follow these steps: ### Step 1: Simplify the Numerator 1. **Calculate \(10^2\)**: \[ 10^2 = 100 \] 2. **Calculate \(\left(\frac{1}{5}\right)^3\)**: \[ \left(\frac{1}{5}\right)^3 = \frac{1}{125} \] 3. **Multiply \(100\) by \(\frac{1}{125}\)**: \[ 100 \times \frac{1}{125} = \frac{100}{125} = \frac{4}{5} \] 4. **Calculate \(\frac{2}{5} \text{ of } 15\)**: \[ \frac{2}{5} \times 15 = \frac{30}{5} = 6 \] 5. **Combine the results in the numerator**: \[ \frac{4}{5} \div \frac{1}{4} \times 4 - 6 \] First, calculate \(\frac{4}{5} \div \frac{1}{4}\): \[ \frac{4}{5} \div \frac{1}{4} = \frac{4}{5} \times 4 = \frac{16}{5} \] Now, substitute back: \[ \frac{16}{5} - 6 = \frac{16}{5} - \frac{30}{5} = \frac{16 - 30}{5} = \frac{-14}{5} \] ### Step 2: Simplify the Denominator 1. **Calculate \(5 \div 5 \text{ of } 12\)**: \[ 5 \div 5 = 1 \quad \text{so} \quad 1 \text{ of } 12 = 12 \] 2. **Combine with \(\frac{1}{6}\)**: \[ 12 + \frac{1}{6} = \frac{72}{6} + \frac{1}{6} = \frac{73}{6} \] 3. **Multiply by \(\frac{4}{5}\)**: \[ \frac{4}{5} \times \frac{73}{6} = \frac{292}{30} = \frac{146}{15} \] ### Step 3: Combine the Numerator and Denominator Now, we have: \[ \frac{\frac{-14}{5}}{\frac{146}{15}} \] To divide fractions, multiply by the reciprocal: \[ \frac{-14}{5} \times \frac{15}{146} = \frac{-14 \times 15}{5 \times 146} \] ### Step 4: Simplify the Final Expression 1. **Calculate the numerator**: \[ -14 \times 15 = -210 \] 2. **Calculate the denominator**: \[ 5 \times 146 = 730 \] 3. **Final fraction**: \[ \frac{-210}{730} \] 4. **Simplify**: \[ \frac{-21}{73} \] ### Final Answer The simplified expression is: \[ \frac{-21}{73} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)