Home
Class 14
MATHS
Given 2^2+4^2+6^2+……+40^2=11480 then the...

Given `2^2+4^2+6^2+……+40^2=11480` then the value of
`1^2+2^2+3^2+…+20^2` is

A

`2867`

B

`2870`

C

`2839`

D

`2868`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 6^2+7^2+8^2+......+20^2

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

Given that 1^(2) + 2^(2) + 3^(2) + ... + 20^(2) = 2870 , the value of (2^(2) + 4^(2) + 6^(2) + ... + 40^(2)) is :

The value of 1 + 2^2 + 2^3 + 2^4 + ……+ 2^9 is ______

The value of (9^(2)+40^(2))^(3/2)=

Given that (1^(2)+2^(2)+3^(2)+..20^(2))=2870, the value of (2^(2)+4^(2)+6^(2)++40^(2)) is 2870 (b) 5740(c)11480(d)28700