Home
Class 10
MATHS
Prove that ((sin^4theta - cos^4 theta)/(...

Prove that `((sin^4theta - cos^4 theta)/(sin^2theta-cos^2theta))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Prove that : ( sin theta- cos theta +1)/( sin theta +cos theta -1) = (1)/( sec theta - tan theta)

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta