Home
Class 10
MATHS
If a+b+c=0 then (a^4+b^4+c^4)/(a^2b^2+b^...

If `a+b+c=0` then `(a^4+b^4+c^4)/(a^2b^2+b^2c^2+c^2a^2)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, a^4+b^4+c^4=2a^2b^2+b^2c^2+2a^2c^2 then sinA is equal to (A) 1/sqrt(2) (B) 1/2 (C) sqrt(3)/2 (D) none of these

Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)| is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

If a b+b c+c a=0, then solve a(b-2c)x^2+b(c-2a)x+c(a-2b)=0.

Factorize: a^2+4b^2-4a b-4c^2

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then (a) 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

If a + b + c = 0 and a^(2) + b^(2) + c^(2) = 4, them find the value of a^(4) + b^(4) +c^(4) .

If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to: a. -2 b. 2 c. 0 d. 1