Home
Class 12
PHYSICS
Trajectory followed by a particle moving...

Trajectory followed by a particle moving in xy plane is given by `y= 4x-3x^(2)`, where x and y are in meter. finde the distnce between the points where its y co-ordinate is zero.

Promotional Banner

Similar Questions

Explore conceptually related problems

The potential energy of a particle of mass 1 kg moving in X-Y plane is given by U=(12x+5y) joules, where x an y are in meters. If the particle is initially at rest at origin, then select incorrect alternative :-

Equation of trajectory of a projectile is given by y = -x^(2) + 10x where x and y are in meters and x is along horizontal and y is vericall y upward and particle is projeted from origin. Then : (g = 10) m//s^(2)

x and y co-ordinates of a particle moving in x-y plane at some instant of time are x=2t and y=4t .Here x and y are in metre and t in second. Then The path of the particle is a…….

x and y co-ordinates of a particle moving in x-y plane at some instant of time are x=2t and y=4t .Here x and y are in metre and t in second. Then The distance travelled by the particle in a time from t=0 to t=2s is ……… m

The potential energy of a particle of mass 2 kg moving in a plane is given by U = (-6x -8y)J . The position coordinates x and y are measured in meter. If the particle is initially at rest at position (6, 4)m, then

A particle of mass 5 kg moving in the x-y plane has its potential energy given by U=(-7x+24y)J where x and y are in meter. The particle is initially at origin and has a velocity vec(i)=(14 hat(i) + 4.2 hat (j))m//s

A particle id moving in xy - plane with y = x//2 and v_x = 4 - 2t . Choose the correct options.

The coordinates of a particle moving in XY-plane very with time as x=4t^(2),y=2t . The locus of the particle is

The potential energy U in joule of a particle of mass 1 kg moving in x-y plane obeys the law U = 3x + 4y , where (x,y) are the co-ordinates of the particle in metre. If the particle is at rest at (6,4) at time t = 0 then :

A particle moves in x-y plane according to the law x = 4 sin 6t and y = 4 (1-cos 6t) . The distance traversed by the particle in 4 second is ( x & y are in meters)