Home
Class 12
MATHS
If A^2-A+I=0 then A^-1is equal to:...

If `A^2-A+I=0` then `A^-1`is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-A+I=O , then A^(-1) is equal to

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to

If A is a square matrix such that A^2 = I , then A^(-1) is equal to (i) I (ii) 0 (iii) A (iv) I+A

If A^(2) - 3 A + 2I = 0, then A is equal to

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If [[x,1]] [[1,0],[-2,0]] =0 then x is equal to

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A = [(1,0),(1/2,1)] , then A^100 is equal to

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to