Home
Class 10
MATHS
f(x)=sqrt(x^2+1) then the value of f'(-1...

`f(x)=sqrt(x^2+1)` then the value of `f'(-1)` is
`(A) 1/sqrt2`
`(B) -1/sqrt2`
`(C) 1`
`(D) -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(sinx)^1 t^2f(t)dt=1-sinx , then the value of f(1/sqrt(3)) is (A) 1/sqrt(3) (B) 1/3 (C) sqrt(3) (D) 3

f(x)=(1)/(sqrt(x^(2)-1))

if x=(sqrt2 + 1 ) ^(-1//3) , then the value of (x^3 - frac(1) (x^3)) is (A) 0 (B) -sqrt2 (C ) -2 (D) 3sqrt2

The value of cos (1110^@) is A. sqrt3//2 B. 1//2 C. 1//sqrt2 D. 1

If f(1)=1 , f'(1)=2 , then find the value of lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1) (A) 2 (B) 4 (C) 1 (D) (1)/(2)

If x^(3)f(x)=sqrt(1+cos2x)+|f(x)|,(-3 pi)/(4)

If x=sqrt(1+sqrt(1+sqrt(1+sqrt(1+.oo))), then ) the value of x is (A)(sqrt(7)+1)/(2) (B) (sqrt(6)+1)/(2)(C)(sqrt(3)+1)/(2) (D) (sqrt(5)+1)/(2)

If mean value theorem holds good for the function f(x)=(x-1)/(x) on the interval [1,3] then the value of 'c' is 2 (b) (1)/(sqrt(3))( c) (2)/(sqrt(3))(d)sqrt(3)

If f(1)=1,f'(1)=2, then write the value of (lim)_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)