Home
Class 12
MATHS
Prove : tan^(-1)(1/(2))+tan^(-1)(1/(3))=...

Prove : `tan^(-1)(1/(2))+tan^(-1)(1/(3))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)

Prove: 4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan(2tan^(-1)((1)/(3))-(pi)/(4))

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)

Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

prove tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))