Home
Class 12
MATHS
x=e^(t)sint, y=e^(t)cost (d^(2)y)/(dx^(...

`x=e^(t)sint`, `y=e^(t)cost` `(d^(2)y)/(dx^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x= sin sqrtt,y =e^(sqrt( t) ),then (d^(2)y)/(dx^(2))=

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))