Home
Class 12
MATHS
Let J = int0^1 cot^-1 ( 1 - x + x^2)dx a...

Let J = `int_0^1 cot^-1 ( 1 - x + x^2)dx` and K = `int_0^1 tan^1x dx`. If J = `lambda`K ( `lambda` in N ), then `lambda` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1 tan^1x/(1+x^2)dx

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

Prove that: int_0^1tan^-1.(1/(1-x+x^2))dx=2int_0^1tan^-1xdx

int_(0)^(1)(cot^(-1)x)/(1+x^(2))dx

Find: int_0^1x (tan^-1 x)^2 dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

If int_(0)^(1)cot^(-1)(1-x+x^(2))dx=lambda int_(0)^(1)tan^(-1)xdx, then lambda is equal to 1( b) 2(c)3(d)4