Home
Class 12
MATHS
int(0)^(1) (dx)/(x+sqrt (1-x^2)...

`int_(0)^(1) (dx)/(x+sqrt (1-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

int_(0)^(1) x sqrt((1-x^(2))/(1+x^(2)))dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx