Home
Class 12
MATHS
If A=[(-i,0),(0,i)] then A^'.A is equal ...

If `A=[(-i,0),(0,i)]` then` A^'.A` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal to : a) 3I b) -5I c) 5I d) none of these

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A=[(i,0), (0,i)],\ n in N , then A^(4n) equals [(0,i), (i,0)] (b) [(0 ,0) ,(0, 0)] (c) [(1, 0) ,(0, 1)] (d) [(0,i) ,(i,0)]

If A=[[i,0], [0,i]] , write A^2 .

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

matrix A=({:(-i,0),(0,-i):}) then A^2 =

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to