Home
Class 11
MATHS
Find lim(n->oo) (b/n)=0...

Find `lim_(n->oo) (b/n)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

The value of lim_(n->oo) n^(1/n)

Given lim_(n->oo)((.^(3n)C_n)/(.^(2n)C_n))^(1/n) =a/b where a and b are relatively prime, find the value of (a + b) .

Prove that lim_(n->oo)(1+1/n)^n=e

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

If a >0,b >0 then (lim)_(n->oo)((a-1+b^(1/n))/a)^n= b^(1//a) b. a^(1/b) c. a^b d. b^a

lim_(n rarr oo)2^(1/n)