Home
Class 11
MATHS
Prove (log x^(2)-log x)*log((1)/(x))+(lo...

Prove `(log x^(2)-log x)*log((1)/(x))+(log x)^(2)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log x)^(log x),x gt1

(1+log x)^(2)/(x)

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve: (log)_(x+1/x)(log_2(x-1)/(x-2))>0