Home
Class 12
MATHS
If y=sqrtx^(sqrtx^(sqrtx...infty)) then ...

If `y=sqrtx^(sqrtx^(sqrtx...infty))` then prove that `xdy/dx=y^2/(2-ylogx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x)^(sqrt(x)^(sqrtx...oo)) then prove that dy/dx=(y^2)/(x(2-y log x )).

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

y = sqrt(1+sqrtx)

y = sqrt(2 -sqrtx)

sqrtx + 1/sqrtx

(sin sqrtx)/(sqrtx).

If y=(sqrtx)^((sqrtx)^((sqrtx)^(...oo))) then (dy)/(dx)=

1/sqrtx (sqrtx+1/sqrtx)^2

y = sqrtx + 1/sqrtx

y = x+sqrtx+1/sqrtx