Home
Class 11
PHYSICS
Momentum of a block as a function of tim...

Momentum of a block as a function of time is given by `P=(10t^(2)hat i+5t^(1))kgms^(-1)`,the force acting on block at `t=2s` is
`F=(20hat i+6hat j)N`
`F=(40hat i+5hat j)N`
`F=(10hat i+5hat j)N`
`F=(5hat i+10hat j)N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (3hat i-hat j+5hat k)-(hat i-5hat j+3hat k)

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Show that the points A(-2hat i+3hat j+5hat k),B(hat i+2hat j+3hat k) and C(7hat i-hat k) are collinear.

Consider a line vec r=hat i+t(hat i+hat j+hat k) and a plane (vec r-(hat i+hat j))*(hat i-hat j-hat k)=1

the angle between the vectors 2hat i-3hat j+2hat k and hat i+5hat j+5hat k is

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Equation of the plane containing the lines vec r=(hat i-2hat j+hat k)+t(hat i+2hat j-hat k)vec r=(hat i+2hat j-hat k)+s(hat i+hat j+3hat k) is

If hat i-3 hat j+5 hat k bisects the angle between hat aa n d- hat i+2 hat j+2 hat k ,w h e r e hat a is a unit vector, then a. hat a=1/(105)(41 hat i+88 hat j-40 hat k) b. hat a=1/(105)(41 hat i+88 hat j+40 hat k) c. hat a=1/(105)(-41 hat i+88 hat j-40 hat k) d. hat a=1/(105)(41 hat i-88 hat j-40 hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

If t is a real number, and a vector vec r satisfies the equation vec r times(hat i-2hat j+hat k)=hat i-hat k , then vec r can be equal to- (A) hat j+t(hat i-2hat j+hat k) (B) hat i-hat j+hat k (C) 2hat i-3hat j+2hat k (D) hat i+hat k