Home
Class 14
MATHS
In the pentagon A, B, C, D, E AB=AE=12, ...

In the pentagon A, B, C, D, E AB=AE=12, CD=DE=3 and BC=6. Which of the following can be the value(s) of the `angleBAE` ?

A

`45^(@)`

B

`60^(@)`

C

`90^(@)`

D

All of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the possible values of the angle \( \angle BAE \) in the pentagon \( A, B, C, D, E \) with the given side lengths, we can follow these steps: ### Step 1: Understand the given information We have a pentagon with the following sides: - \( AB = AE = 12 \) - \( CD = DE = 3 \) - \( BC = 6 \) ### Step 2: Identify the triangle We need to focus on triangle \( ABE \) since we are looking for \( \angle BAE \). In triangle \( ABE \): - \( AB = 12 \) - \( AE = 12 \) - The triangle is isosceles because \( AB = AE \). ### Step 3: Use the triangle angle sum property The sum of the angles in triangle \( ABE \) is \( 180^\circ \): \[ \angle A + \angle B + \angle E = 180^\circ \] Since \( AB = AE \), we have \( \angle B = \angle E \). Let’s denote \( \angle B = \angle E = x \). ### Step 4: Set up the equation Substituting into the angle sum equation: \[ \angle A + 2x = 180^\circ \] This implies: \[ \angle A = 180^\circ - 2x \] ### Step 5: Determine the range for \( x \) Since \( \angle A \) must be positive, we have: \[ 180^\circ - 2x > 0 \implies 2x < 180^\circ \implies x < 90^\circ \] ### Step 6: Calculate possible values of \( x \) Now, we can find possible values for \( x \): - If \( x = 45^\circ \): \[ \angle A = 180^\circ - 2(45^\circ) = 90^\circ \] - If \( x = 60^\circ \): \[ \angle A = 180^\circ - 2(60^\circ) = 60^\circ \] - If \( x = 90^\circ \): \[ \angle A = 180^\circ - 2(90^\circ) = 0^\circ \text{ (not possible)} \] ### Step 7: Conclusion Thus, the possible values for \( \angle BAE \) (which is \( x \)) can be: - \( 45^\circ \) - \( 60^\circ \) - Any value less than \( 90^\circ \)
Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF,vec AB=a,vec BC=b and vec CD=c. Then ,vec AE=

In the figure A-D-C and B-E-C seg DE|| side AB. If AD=5, DC=3, BC=6.4 then find BE.

In the given triangle,AB=12cm,AC=15cm and AD=6cm.BC//DE .Find the length of AE.

If A:B=3:2, B:C=4:3 and C:D=3:5, then divide Rs 360 among A,B,C and D. the following are the steps involved in solving the above problem. Arrange them in sequential order. (A) A's share =(6)/(18)xx360=Rs120 (B) impliesA:B:C:D=6:4:3:5 (C) A:B=3:2=6:3,B:C=4:3 and C:D=3:5 (D) to divide Rs 360 among A,B,C and D, we should know the value of A:B:C:D.

In DeltaABC DE||BC, where DE intersects AB and AC at the points D and E, respectively. If AD = 6 cm, DB = 12X- 6cm, AE= 2x cm and CE = 16 - 2x cm, then the value of X is

(2) If A:B=2:3 , B:C=4:5 and C:D=6:7, find A:D