Home
Class 14
MATHS
Find the value of [2xx 3^(n+4) - 9xx 3^(...

Find the value of `[2xx 3^(n+4) - 9xx 3^(n)]/3^(n+2)`.

A

18

B

3

C

1

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{2 \cdot 3^{n+4} - 9 \cdot 3^n}{3^{n+2}}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{2 \cdot 3^{n+4} - 9 \cdot 3^n}{3^{n+2}} \] ### Step 2: Simplify the numerator We can factor out \(3^n\) from the numerator: \[ = \frac{3^n(2 \cdot 3^4 - 9)}{3^{n+2}} \] ### Step 3: Calculate \(3^4\) Now, calculate \(3^4\): \[ 3^4 = 81 \] So, we can substitute this value into the expression: \[ = \frac{3^n(2 \cdot 81 - 9)}{3^{n+2}} \] ### Step 4: Simplify inside the parentheses Now simplify inside the parentheses: \[ 2 \cdot 81 = 162 \] Thus, we have: \[ = \frac{3^n(162 - 9)}{3^{n+2}} \] Calculating \(162 - 9\): \[ 162 - 9 = 153 \] So, we can rewrite the expression as: \[ = \frac{3^n \cdot 153}{3^{n+2}} \] ### Step 5: Simplify the fraction Now, we can simplify the fraction by using the property of exponents: \[ = 153 \cdot \frac{3^n}{3^{n+2}} = 153 \cdot 3^{n - (n+2)} = 153 \cdot 3^{-2} \] ### Step 6: Calculate \(3^{-2}\) Calculating \(3^{-2}\): \[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \] So, we have: \[ = 153 \cdot \frac{1}{9} \] ### Step 7: Final calculation Now, we can calculate: \[ = \frac{153}{9} = 17 \] Thus, the final value of the expression is: \[ \boxed{17} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) is equal to

Find the value of n. (2^(n)xx2^(6))/(2^(-3))=2^(18)

If 2^(n-7) xx 5^(n-4)=1250, find the value of n. Hint: 2^(n-4) xx 2^(-3) xx 5^(n-1)=1250 implies frac(2^(n-4) xx 5^(n-4))(2^(3))= 1250 implies (2 xx 5)^(n-4)=(10)^(4).

The value of (3^((12+n))xx9^((2n-7)))/(3^(5n)) is