Home
Class 14
MATHS
If sintheta-costheta=(1)/(2) the value o...

If `sintheta-costheta=(1)/(2)` the value of `sintheta+costheta` is

A

`-2`

B

`+-2`

C

`(sqrt(7))/(2)`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin \theta + \cos \theta \) given that \( \sin \theta - \cos \theta = \frac{1}{2} \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \sin \theta - \cos \theta = \frac{1}{2} \] 2. **Square both sides:** \[ (\sin \theta - \cos \theta)^2 = \left(\frac{1}{2}\right)^2 \] This simplifies to: \[ \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta = \frac{1}{4} \] 3. **Use the Pythagorean identity:** We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can replace \( \sin^2 \theta + \cos^2 \theta \) in the equation: \[ 1 - 2\sin \theta \cos \theta = \frac{1}{4} \] 4. **Rearrange the equation:** \[ -2\sin \theta \cos \theta = \frac{1}{4} - 1 \] This simplifies to: \[ -2\sin \theta \cos \theta = \frac{1}{4} - \frac{4}{4} = -\frac{3}{4} \] 5. **Divide both sides by -2:** \[ \sin \theta \cos \theta = \frac{3}{8} \] 6. **Now, we need to find \( \sin \theta + \cos \theta \). Use the identity:** \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta \] Substitute the known values: \[ (\sin \theta + \cos \theta)^2 = 1 + 2\left(\frac{3}{8}\right) \] This simplifies to: \[ (\sin \theta + \cos \theta)^2 = 1 + \frac{6}{8} = 1 + \frac{3}{4} = \frac{4}{4} + \frac{3}{4} = \frac{7}{4} \] 7. **Take the square root:** \[ \sin \theta + \cos \theta = \sqrt{\frac{7}{4}} = \frac{\sqrt{7}}{2} \] ### Final Answer: \[ \sin \theta + \cos \theta = \frac{\sqrt{7}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta+costheta=1 , then the value of sin2theta is

If sintheta + cos theta =1 , then the value of sintheta - costheta is:

If sintheta+costheta=(17)/(13) , then sintheta-costheta=?

If sintheta+costheta=(17)/(13) , then sintheta.costheta .

If sintheta+costheta=sqrt(2) , then find the value of sintheta-costheta .

If sintheta+costheta=sqrt(2)sintheta , then sintheta-costheta=?

If sintheta + 2 costheta=1 ,then prove that 2sintheta-costheta=2 .

If sintheta+costheta=(7)/(5) , find sintheta.costheta .

If (sintheta)/(x)=(costheta)/(y) then sintheta-costheta is equal to