Home
Class 14
MATHS
If cos^(2)x+cos^(4)x=1, then find the va...

If `cos^(2)x+cos^(4)x=1`, then find the value of `tan^(2)x+tan^(4)x`.

A

`(1)/(4)`

B

`(1)/(2)`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1)x=(3)/(4), then find the value of cos^(-1)x

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If cos x=(4)/(5) and x is acute find the value of tan 2x.

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

If tan x-tan^(2)x=1, then the value of tan^(4)x-2tan^(3)x-tan^(2)x+2tan x+k=4, then k is equal to

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If cos^(2)x+cos^(4)x=1 then tan^(2)x+tan^(4)x=1)12)03)-14)2

If tan x+tan^(2)x+tan^(8)x=1, then the value of 2cos^(6)x-2cos^(4)+cos^(2)x equals to